segunda-feira, 22 de setembro de 2008

Terapia Gênica. saiba mais.

Terapia Genética é o tratamento de doenças baseado na transferência de material genético. Em sua forma mais simples, a terapia genética consiste na inserção de genes funcionais em células com genes defeituosos, para substituir ou complementar esses genes causadores de doenças. A maioria das tentativas clínicas de terapia genética atualmente em curso são para o tratamento de doenças adquiridas, como AIDS, neoplasias malignas e doenças cardiovasculares, mais do que para doenças hereditárias. Em alguns protocolos, a tecnologia de transferência gênica vem sendo usada para alterar fenotipicamnete uma célula de tal modo a torná-la anti-gênica e assim desencadear uma resposta imunitária. De maneira análoga, um gen estranho pode ser inserido em uma célula para servir como um marcador genotípico ou fenotípico, que pode ser usado tanto em protocolos de marcação gênica quanto na própria terapia genética. O panorama atual indica que a terapia genética não se limita às possibilidades de substituir ou corrigir genes defeituosos, ou eliminar seletivamente células marcadas. Um espectro terapêutico muito mais amplo se apresenta à medida em que novos sistemas são desenvolvidos para permitir a liberação de proteínas terapêuticas, tais como, hormônios, citocininas, anticorpos, antígenos ou novas proteínas recombinantes.
A tecnologia básica envolvida em qualquer aplicação de terapia genética é a transferência gênica. A maneira mais simples de transferir genes para a célula e tecidos é por meio do inoculação de DNA puro, com técnicas de microinjeçào; eletroporação e o método biobalístico. Métodos mais elaborados e mais eficientes incluem a administração de DNA encapsulado (e.g., lipossomos); ou através de vetores virais, que podem ser fragmentados de DNA de vírus contendo o DNA a ser transferido; ou mesmo a partícula viral formada por proteínas virais empacotando um DNA viral modificado de maneira a tornar o vetor menos tóxico, menos patogênico ou não patogênico.
Diversos tipos de vetores são utilizados com o objetivo de levar o DNA terapêutico ao núcleo das células-alvo. Outra forma de transferência de mensagem genética envolve a entrega de RNA diretamente ao citoplasma das células, mas o RNA é mais instável que o DNA, o que limita a aplicação dessa modalidade de transferência gênica. O uso de mitocôndrias ou DNA mitocondrial (mtDNA) como vetores gênicos citoplasmáticos tem aplicação potencial na reposição do mtDNA a células com deficiência no metabolismo energético da fosforilação oxidativa causada por mutações no mtDNA. Afora o núcleo, a mitocôndria é a única organela que possui seu próprio DNA.

Código Genético humano. O que é???

Em termos genéricos é o conjunto dos genes humanos. Neste material genético está contida toda a informação para a construção e funcionamento do organismo humano. Este codigo está contido em cada uma das nossas células. O genoma humano distribui-se por 23 pares de cromossomos que, que por sua vez, contêm os genes. Toda esta informação é codificada pelo ADN (ácido desoxirribonucleico) que se organiza numa estrutura de dupla hélice, formada por quatro bases que se unem invariavelmente aos pares - adenina com timina e citosina com guanima.

A ordem particular do alinhamento dos pares ao longo da cadeia corresponde à sua sequenciação. Estas sequências que codificam as proteínas são os genes, que constituem a menor parte do ADN. Para além dos genes, o ADN é constituído na sua maior parte por material genético inativo(97%), o qual aparentemente não possui qualquer utilidade. Estudos recentes mostram que material não pode ser desprezado. Coloca-se a hipótese do mesmo desempenhar funções de coordenação e de conservação do ADN.

Projeto: Mapeamento do Genoma Humano.

Objetivo Específico do Projeto Genoma Humano


A grande meta do Projeto Genoma Humano é ler e entender estas instruções. Em outras palavras, é nada menos que a busca do completo entendimento da base genética do Homo sapiens, incluindo a base genética das doenças. De posse desse conhecimento, o objetivo seguinte é aplicar tecnologia para alterar, quando preciso, algumas das instruções, visando aperfeiçoar o ser humano e livrá-lo de doenças e outros fatores limitante.

Os Números da Genética
O corpo humano contém cerca de 100 trilhões de células. Na maioria das células existe um núcleo, onde se encontra algo essencial: o genoma humano, uma estrutura contendo o projeto de construção e funcionamento do corpo. O genoma é encontrado no núcleo das células sob a forma de 46 filamentos enrolados em pacotes chamados cromossomos, que incluem também moléculas de proteínas associadas.



Se desenrolássemos estes fios e os ligássemos em série, eles formariam um frágil cordão com cerca de 1 metro e meio de comprimento, e apenas 20 trilionésimos de largura! Este fantástico cordão que encerra o código genético é na verdade constituído por uma gigantesca molécula, conhecida como ácido desoxirribonucléico — o DNA.

A estrutura espacial do DNA, descoberta em 1953 por James Watson e Francis Crick, através de estudos de difração de raios-X, tem a forma de uma dupla hélice, a famosa "escada helicoidal".

É como se fosse uma escada flexível formada por duas cordas torcidas, ligadas por degraus muito estreitos. Cada "corda" é um arranjo linear de unidades semelhantes que se repetem, chamadas nucleotídeos, e se compõem de açúcar, fosfato e uma base nitrogenada. Existem quatro bases nitrogenadas no DNA, as quais se unem aos pares para formar os "degraus" da escada: adenina (A), timina (T), guanina (G) e citosina (C). Um dado fundamental no mecanismo de funcionamento do DNA é o fato de que A e T se atraem mutuamente, da mesma forma que C e G. Elas obedecem rigorosamente à regra de que só podem se unir destas duas maneiras: A se liga a T e G se liga a C. Não pode existir no DNA um par de bases formado de adenina e citosina, ou de timina e guanina, por exemplo. A ordem particular em que as bases se alinham ao longo da cadeia de açúcar e fosfato é chamada a seqüência nucleotídica do DNA. Essa seqüência é característica para cada organismo e encerra milhões de sinais que a célula consegue interpretar como instruções para a fabricação de proteínas, como veremos a seguir.



Como funciona o Código Genético
O corpo humano conta com 20 aminoácidos diferentes, que se unem em diferentes seqüências, para constituir as diferentes proteínas necessárias à sua estrutura e funcionamento. O organismo humano pode sintetizar pelo menos 80 mil diferentes proteínas.

A instrução para que as células fabriquem uma proteína específica é dada por um segmento da cadeia de DNA contendo uma seqüência específica de bases. Isso é o que constitui o gene: um segmento de DNA que contém a mensagem completa para a síntese de uma proteína. Na linguagem química do código genético, um gene funciona como uma "sentença", cujas letras seriam as quatro bases A, C, G e T. Cada conjunto de 3 bases (codons), na seqüência ao longo da "corda" do DNA, seriam as "palavras", as quais sinalizam às células um determinado aminoácido a ser usado na síntese da proteína. Por exemplo, a seqüência de bases ATG codifica o aminoácido metionina. Um fragmento do DNA com a seqüência GAGATGGCA codifica uma seqüência de três aminoácidos, que são, respectivamente, ácido glutâmico, metionina e alanina.
Desvendar o seqüenciamento das bases dentro do DNA, para cada organismo, é desvendar o seu código genético, o "segredo" de sua formação e de seu funcionamento, pois o DNA é o "manual de instruções" usado pela célula.



Os Números da Genética

O padrão genético da espécie humana -- o genoma humano -- contém de 60 a 80 mil genes, cada um deles contendo instruções sobre como as células devem produzir um determinado tipo de proteína.
Uma vez que 3 bases codificam um aminoácido, uma proteína codificada por um gene de tamanho médio (contendo 3 mil pares de bases, por exemplo), conterá mil aminoácidos.

O número total de pares de bases é o que geralmente determina o tamanho do genoma: o genoma do homem contém aproximadamente 3 bilhões de pares de bases; o de uma levedura, cerca de 15 milhões; e o da bactéria Escherichia coli, cerca de 4,5 milhões.

Os cientistas calculam que a diferença entre o DNA do homem e o DNA do chimpanzé é de apenas 2%.

Entre os estudos de organismos não-humanos, o seqüenciamento genético da bactéria Xylella fastidiosa é uma contribuição brasileira ao Projeto Genoma. Banco de Dados Microbiológicos do TIGR)

Um aspecto particular do Projeto Genoma Humano norteamericano é que ele procura abordar também os aspectos éticos, legais e sociais envolvidos.
O Projeto Genoma Humano é um empreendimento internacional, iniciado formalmente em 1990 e projetado para durar 15 anos, com os seguintes objetivos:

— Identificar e fazer o mapeamento dos 80 mil genes que se calcula existirem no DNA das células do corpo humano;

— Determinar as seqüências dos 3 bilhões de bases químicas que compõem o DNA humano;

— Armazenar essa informação em bancos de dados, desenvolver ferramentas eficientes para analisar esses dados e torná-los acessíveis para novas pesquisas biológicas.



Como parte deste empreendimento, paralelamente estão sendo desenvolvidos estudos com outros organismos selecionados, principalmente microorganismos, visando desenvolver tecnologia e também como auxílio ao trabalho de interpretar a complexa função genética humana. Como existe uma ordem subjacente a toda a diversidade da vida e como todos os organismos se relacionam através de semelhanças em suas seqüências de DNA, o conhecimento adquirido a partir de genomas não-humanos freqüentemente leva a novas descobertas na biologia humana.

Significado de mapeamento e seqüenciamento do genoma
O PGH tem como um objetivo principal construir uma série de diagramas descritivos de cada cromossomo humano, com resoluções cada vez mais apuradas. Para isso, é necessário: dividir os cromossomos em fragmentos menores que possam ser propagados e caracterizados; e depois ordenar estes fragmentos, de forma a corresponderem a suas respectivas posições nos cromossomos (mapeamento).

Depois de completo o mapeamento, o passo seguinte é determinar a seqüência das bases de cada um dos fragmentos de DNA já ordenados. O objetivo é descobrir todos os genes na seqüência do DNA e desenvolver meios de usar esta informação para estudo da biologia e da medicina.

Um mapa genômico descreve a ordem dos genes ou de outros marcadores e o espaçamento entre eles, em cada cromossomo. Existem mapas de baixa resolução, como os mapas de associações genéticas, que indicam as posições relativas dos marcadores de DNA (genes e outras seqüências identificáveis de DNA) através de seus padrões de hereditariedade; e existem os mapas físicos, que descrevem as características químicas da própria molécula de DNA. Um nível maior de resolução é obtido associando-se os genes a cromossomos específicos.

domingo, 4 de maio de 2008

Sistema ABO

É o sistema que classifica o sangue humano em quatro tipos: A, B, AB e O. Este sistema foi descoberto em 1900, pelo austríaco Landsteiner.genética do ABO – É um caso de alelos múltiplos em que atuam três genes: Ia, Ib e i. A relação de dominância é: IA = IB, IA > i e IB > i. A determinação ocorre da seguinte maneira: 1. As hemácias humanas podem apresentar substâncias químicas denominadas aglutinógenos ou aglutinogênios, que podem ser de dois tipos A e B. 2. Hemácias que apresentarem o aglutinógeno A em suas membranas serão classificadas como sendo do “tipo A”; hemácias com aglutinógeno B serão classificadas como “tipo B”; quando possuírem os dois aglutinógenos ao mesmo tempo serão classificadas como “tipo AB”, e se não possuírem nenhum dos dois, serão chamadas de “tipo O”.

Por que algumas transfusões causam problemas? A resposta é simples. No plasma sanguineo (parte líquida), existem substâncias dissolvidas denominadas aglutininas (que agem como “anticorpos”) especializadas na destruição por aglutinação de hemácias que, por acaso, apresentem aglutinógenos estranhos a este organismo. As aglutininas podem ser: Anti-A (especializada em “destruir” hemácias tipo A) e Anti-B (especializada em destruir hemácias tipo B). Assim, para que uma transfusão ocorra sem problemas devemos ter: As hemácias (aglutinógenos) do doador devem ser aceitas pelo plasma (aglutininas) do receptor.

Membrana Plasmática- Transporte de substâncias.

O que aconteceria com a célula se a membrana plasmática não permitisse a passagem de nenhuma substância através dela?Assim como, por exemplo, um carro precisa de portas para as pessoas entrarem e sair, as células também possuem mecanismos que permitem a entrada e a saída de substâncias. Dizemos que a membrana plasmática seleciona a passagem destas substâncias e que ela possui, desta forma, uma permeabilidade seletiva.A camada fosfolipídica da membrana plasmática funciona como uma barreira fluida (maleável) e permite a passagem de substâncias diretamente através dela. Você acha que tudo consegue atravessar essa barreira fosfolipídica? A resposta é não. Atravessará a barreira apenas as substâncias pequenas que consigam se entremear através dos fosfoslipídeos. Essas substâncias precisam ter afinidades por lipídeos, senão não conseguiriam se "misturar" com eles para atravessar a membrana.Por outro lado não são apenas substâncias com afinidades por lipídeos que atravessam a membrana plasmática. As substâncias que não conseguem atravessar diretamente a camada fosfolipídica podem entrar ou sair da célula através de suas portas e janelas, que são as proteínas.


A passagem das substâncias de pequeno porte através da membrana pode ocorrer passivamente ou ativamente.




Transporte Ativo – Movimento de entrada ou saída de substâncias em uma célula com gasto de energia. Ex: bomba de sódio e potássio. Para entender o transporte ativo, pense em nosso exemplo e imagine o caso da pessoa que está do lado de fora do Onibus lotado. Para entrar no onibus esta pessoa terá que "vencer" a direção natural de movimento de passageiros. E, ao fazer isso, terá que se movimentar contra um "gradiente" de passageiros e se esforçar bastante. Em outras palavras, ela terá que gastar energia. Para ocorrer a passagem de uma molécula contra um gradiente de concentração também será necessário o gasto de energia.


Transporte Passivo – Movimento feito sem gasto de energia, ou seja, respeitando o gradiente de concentração. Ex: os Osmose – É a difusão da água, ou seja, a passagem de água de um meio hipotônico (onde ela se encontra em maior quantidade) para um meio hipertônico (onde ela se encontra em menor quantidade). Em um meio hipotônico existe maior quantidade de água e menor quantidade de sal dissolvido. O contrário ocorre em um meio hipertônico.


Difusão facilitada – É a passagem de macromoléculas através de proteínas especiais denominadas permeases, que formam poros na membrana.


A membrana plasmática possui a capacidade de englobar substâncias de maior porte através da endocitose.


Endocitose – Transporte de moléculas em grande quantidade. Existem dois tipos de mecanismos para esse transporte: a) Fagocitose – Englobamento de partículas sólidas por meio da emissão de pseudópodes pela membrana plasmática. b) Pinocitose – Englobamento de gotículas líquidas por meio de invaginações da membrana plasmática.


A difusão pode ser entendida como um maior fluxo de movimento de moléculas em direção a uma região onde as mesmas se encontram em menor quantidade.


Transporte Ativo.


Exocitose e Endocitose

quinta-feira, 17 de abril de 2008

Química da Célula-Ácidos Nucleicos.


Há dois tipos identificados de ácidos nucléicos, que são:
O DNA (que significa, em inglês, DesoxirriboNucleic Acid, ou ácido desoxirribonucléico). Ele tem esse nome porque o açúcar que o forma é a desoxirribose. E o RNA (que significa, em inglês, RiboNucleic Acid, ou ácido ribonucléico). O nome vem do açúcar que o compõe, que é a ribose. São formados por unidades menores chamados de Nucleotídios. Cada Nucleotídio apresenta em sua molécula Um fosfato, Uma Pentose(Açúcar) e Uma Base Nitrogenada.




O Ácido Desoxirribonucleico ( DNA) apresenta uma molécula com duas fitas de nucleotídios, sendo estas fitas retorcidas e unidas por uma ligação química denominada; Pontes de Hidrogênio.Essas ligações ocorrem entre as bases nitrogenadas, que para o Dna são quatro: Adenina, Timina, Citosina e Guanina. A Adenina é encontrada somente nos nucleotídios do Dna, as demais são comuns também ao Rna.


O Ácido Ribonucleico (RNA) apresenta somente uma fita de nucleotídios que posuem como bases nitrogenadas ;Uracila, Adenina, Guanina e Citosina. A Uracila é base nitrogenada específica do Rna.
Todos os Seres Vivos possuem Ácidos Nucleicos, Os Vírus possuem um ou outro, nunca os dois.

Quimica da Célula- Enzimas


As enzimas são substâncias naturais (orgânicas) envolvidas em todos os processos bioquímicos que ocorrem nas células vivas. São proteínas e, portanto, consistem em cadeias de aminoácidos unidas por ligações peptídicas. Servem para catalisar reações bioquímicas, o que significa que aumentam a velocidade da reação bioquímica sem se deixar afetar pela reação propriamente dita.


Funções
As enzimas são capazes de decompor moléculas complexas em unidades menores (carboidratos em açúcares, por exemplo), de catalisar alterações estruturais dentro de uma molécula (caso da isomerização da glicose em frutose), assim como podem ajudar a construir moléculas específicas (de material celular, por exemplo). Algumas das enzimas mais conhecidas se encontram em nosso trato digestivo, onde auxiliam a digestão e a assimilação de alimentos.
Uma das características principais das enzimas é que elas têm uma e apenas uma função cada (especificidade). Cada função ou substrato dentro de um organismo possui apenas sua única enzima respectiva. O substrato que será transformado preenche a enzima como chave-fechadura. Apenas quando a enzima ideal encontrar o substrato ideal, as reações bioquímicas podem ocorrer.


As enzimas se conectam às substâncias reagentes e enfraquecem certas ligações químicas, de modo que menos energia (de ativação) é necessária para que as reações ocorram.As enzimas são bastante específicas, decompondo ou compondo apenas certas substâncias em certas condições de temperatura, pH e concentração do substrato (substância na qual a enzima atua). Algumas transformações envolvem várias enzimas como a da glicose em água e gás carbônico que leva 25 passos, cada passo com a participação de várias enzimas. Quando as enzimas são aquecidas, elas aceleram ainda mais as reações, mas apenas até certo ponto a partir do qual elas se modificam e perdem suas propriedades catalisadoras.


Substrato e Enzimas .
amido - amilase,
carboidrato - carboidrase,
lipídio - lipase,
sacarose - sacarase (um tipo de carboidrase),
proteína - protease,
lactose - lactase,
maltose - maltase

terça-feira, 15 de abril de 2008

Química da Célula- Aminoácidos.




Os aminoácidos são as estruturas fundamentais das proteínas. Cada aminoácido consiste de um grupo amino (-NH2) básico (alcalino), um grupo carboxí1lico (-COOH) ácido e uma cadeia lateral (grupo R) que é diferente para cada um dos 20 diferentes aminoácidos.
Cada variação no número ou na seqüência de aminoácidos produz uma proteína diferente, uma grande variedade de proteínas é possível. A situação é semelhante à utilização de um alfabeto de 20 letras para formar palavras. Cada letra seria equivalente a um aminoácido, e cada palavra seria uma proteína diferente.
Os vegetais têm a capacidade de fabricar os vinte aminoácidos necessários para a produção de suas proteínas, já as células animais não sintetizam todos eles, sendo que alguns devem ser ingeridos com o alimento. Assim, os aminoácidos podem ser classificados em dois tipos:
Essenciais - são aqueles que não podem ser sintetizados pelos animais.
Não essenciais ou Naturais- são aqueles que podem ser sintetizados pelos animais.
É importante ressaltar que, para os vegetais, todos os aminoácidos são não essenciais.

Quimica da Célula-Proteínas

São compostos orgânicos de alto peso molecular, são formadas pelo encadeamento de aminoácidos. Representam cerca do 50 a 80% do peso seco da célula sendo, portanto, o composto orgânico mais abundante de matéria viva. Uma molécula protéica contém desde algumas dezenas até mais de 1.000 aminoácidos. 0 peso molecular vai de 10.000 a 2.800.000. A molécula de hemoglobina, por exemplo, é formada por 574 aminoácidos . Justifica-se, assim, o fato de as moléculas protéicas estarem incluídas entre as macromoléculas.

Proteínas simples - São também denominadas de homoproteínas e são constituídas, exclusivamente por aminoácidos. Em outras palavras, fornecem exclusivamente uma mistura de aminoácidos por hidrólise.

Pode-se mencionar como exemplo:

As Albuminas - São as de menor peso molecular - São encontradas nos animais e vegetais. - São solúveis na água. Exemplos: albumina do plasma sangüíneo e da clara do ovo.

As Globulinas - Possuem um peso molecular um pouco mais elevado. - São encontradas nos animais e vegetais - São solúveis em água salgada. Exemplos: anticorpos e fibrinogênio.

As Escleroproteínas ou proteínas fibrosas - Possuem peso molecular muito elevado. - São exclusivas dos animais. - São insolúveis na maioria dos solventes orgânicos. Exemplos: colágeno, elastina e queratina.

Proteínas Conjugadas - São também denominadas heteroproteínas. As proteínas conjugadas são constituídas por aminoácidos mais outro componente não-protéico, chamado grupo prostético.

Proteínas Derivadas :As proteínas derivadas formam-se a partir de outras por desnaturação ou hidrólise. Pode-se citar como exemplos desse tipo de proteínas as proteoses e as peptonas, formadas durante a digestão.

Estrutura: os níveis de organização Molecular de uma proteína são:

Primário - representado peIa seqüência de aminoácidos unidos através das ligações peptídicas.


Secundário - representado por dobras na cadeia (a - hélice), que são estabilizadas por pontes de hidrogênio.

Terciário - ocorre quando a proteína sofre um maior grau de enrolamento e surgem, então, as pontes de dissulfeto para estabilizar este enrolamento.

Quaternário - ocorre quando quatro cadeias polipeptídicas se associam através de pontes de hidrogênio, como ocorre na formação da molécula da hemoglobina (tetrâmero).


Funções: as proteínas podem ser agrupadas em várias categorias de acordo com a sua função. De uma maneira geral, as proteínas desempenham nos seres vivos as seguintes funções: estrutural, enzimática, hormonal, de defesa, nutritivo, coagulação sangüínea e transporte.
Função estrutural - participam da estrutura dos tecidos. Exemplos: - Colágeno: proteína de alta resistência, encontrada na pele, nas cartilagens, nos ossos e tendões. - Actina o Miosina: proteínas contráteis, abundantes nos músculos, onde participam do mecanismo da contração muscular, - Queratina: proteína impermeabilizante encontrada na pele, no cabelo e nas unhas, Evita a dessecação, a que contribui para a adaptação do animal à vida terrestre. - Albumina: proteína mais abundante do sangue, relacionada com a regulação osmótica e com a viscosidade do plasma (porção líquida do sangue).

Função enzimática - toda enzima é uma proteína. As enzimas são fundamentais como moléculas reguladoras das reações biológicas. Dentre as proteínas com função enzimática podemos citar, como exemplo, as lipases - enzimas que transformam os lipídios em sua unidades constituintes, como os ácidos graxos e glicerol.

Função hormonal - muitos hormônios de nosso organismo são de natureza protéica. Resumidamente, podemos caracterizar os hormônios como substãncias elaboradas pelas glândulas endócrinas e que, uma vez lançadas no sangue, vão estimular ou inibir a atividade de certos órgãos. É o caso do insulina, hormônio produzido no pâncreas e que se relaciona com e manutenção da glicemia (taxa de glicose no sangue).

Função de defesa - existem células no organismo capazes de "reconhecer" proteínas "estranhas" que são chamadas de antígenos. Na presença dos antígenos o organismo produz proteínas de defesa, denominados anticorpos. 0 anticorpo combina-se, quimicamente, com o antígeno, do maneira a neutralizar seu efeito. A reação antígeno-anticorpo é altamente específica, o que significa que um determinado anticorpo neutraliza apenas o antígeno responsável pela sua formação. Os anticorpos são produzidos por certas células de corpo (como os linfócitos, um dos tipos de glóbulo branco do sangue). São proteínas denominadas gamaglobulinas.

Função nutritiva - as proteínas servem como fontes de aminoácidos, incluindo os essenciais requeridos pelo homem e outros animais. Esses aminoácidos podem, ainda, ser oxidados como fonte de energia no mecanismo respiratório. Nos ovos de muitos animais (como os das aves) o vitelo, material que se presta à nutrição do embrião, é particularmente rico em proteínas.

Coagulação sangüínea - vários são os fatores da coagulação que possuem natureza protéica, como por exemplo: fibrinogênio, globulina anti-hemofílica.

Transporte - pode-se citar como exemplo a hemoglobina, proteína responsável pelo transporte de oxigênio no sangue.


A desnaturação é um processo, geralmente irreversível, que consiste na quebra das estruturas secundária e terciária de uma proteína. Isso pode ocorrer em decorrência da alteração do Ph e Altas temperaturas.

Uma proteína difere de outra:


Pelo número de aminoácidos: uma proteína A é formada por 610 aminoácidos de determinados tipos e ordenados numa certa seqüência. Uma proteína B é formada pelos mesmos tipos de aminoácidos, na mesma seqüência, mas em número de 611. A proteína B será diferente da A apenas por conter uma unidade a mais.


Pelo tipo de aminoácidos: uma proteína C apresenta, num certo trecho de sua molécula, aminoácidos corno valina, glicina, leucina, triptofano, treonina, alanina e arginina. Uma proteína D, formada pelo mesmo número de aminoácidos e na mesma seqüência que a proteína C, apresenta nesse trecho os aminoácidos valina, glicina, isoleucina, triptofano, treonina, alanina e arginina. Apenas pelo fato de na proteína C haver leucina no trecho de molécula considerado, as proteínas C o D são diferentes.


Pela seqüência dos aminoácidos: uma proteína E é formada, em determinado trecho de sua molécula, pelos aminoácidos cisteína, serina, metionina, leucina, histidina e lisina. Uma proteína F é formada pelos mesmos aminciácidos, mas, no tracho em exame, há uma inversão na posição de dois deles; cisteína, metionina, serina, leucina, hístidina e lisina. Por causa disso, as proteínas E e F são diferentes.


Pelo formato da molécula: as moléculas protéicas assumem determinados formatos é, quando os formatos de duas moléculas são diferentes, elas também o são. Conclui-se, então, que podendo repetir-se à vontade os 20 tipos de aminoácidos e, ainda, combinando-se de várias formas a partir das diferenças que acabamos de examinar, uma célula pode produzir muitas proteínas diferentes. Imagina-se, então, quantas proteínas podem ser produzidas por todos os seres vivos.

Química da Célula- Lipídios.




Os lipídios são compostos com estrutura molecular variada, apresentando diversas funções orgânicas: reserva energética (fonte de energia para os animais hibernantes), isolante térmico (mamíferos), além de colaborar na composição da membrana plasmática das células (os fosfolipídios). São substâncias cuja característica principal é a insolubilidade em solventes polares e a solubilidade em solventes orgânicos (apolares), apresentando natureza hidrofóbica, ou seja, aversão à molécula de água. Os lipídios podem ser classificados em óleos (substâncias insaturadas) e gorduras (substâncias saturadas), encontrados nos alimentos, tanto de origem vegetal quanto animal, por exemplo: nas frutas (abacate e coco), na soja, na carne, no leite e seus derivados e também na gema de ovo. Em geral, todos os seres vivos são capazes de sintetizar lipídios, no entanto algumas classes só podem ser sintetizadas por vegetais, como é o caso das vitaminas lipossolúveis e dos ácidos graxos essenciais. A formação molecular mais comum dos lipídeos, constituindo os alimentos é estabelecida através do arranjo pela união de um glicerol (álcool) ligada a três cadeias carbônicas longas de ácido graxo. Dentre os lipídeos, recebem destaque os fosfolipídios, os glicerídeos, os esteróides e os cerídeos.


Cerídeos : classificados como lipídios simples, são encontrados na cera produzida pelas abelhas (construção da colméia), na superfície das folhas (cera de carnaúba) e dos frutos (a manga). Exerce função de impermeabilização e proteção.


Fosfolipídios : moléculas anfipáticas, isto é, possui uma região polar (cabeça hidrofílica), tendo afinidade por água, e outra região apolar (calda hidrofóbica), que repele a água.


Glicerídeos : podem ser sólidos (gorduras) ou líquidos (óleos) à temperatura ambiente.


Esteróides : formados por longas cadeias carbônicas dispostas em quatro anéis ligados entre si. São amplamente distribuídos nos organismos vivos constituindo os hormônios sexuais, a vitamina D e os esteróis (colesterol).

Quimica da Célula-Carboidratos, Glicídios ou Hidratos de Carbono.

Os carboidratos, moléculas orgânicas constituídas por carbono, hidrogênio e oxigênio, são as principais substâncias produzidas nas plantas durante o processo de fotossíntese. De modo geral, são utilizados pelas células como combustível. Os carboidratos mais simples são os monossacarídeos. Oligossacarídeos e polissacarídeos são moléculas maiores constituídas pela reunião de vários monossacarídeos.

Monossacarídeos
Os monossacarídeos têm normalmente a fórmula Cn(H2O)n, onde n geralmente varia de 3 a 7. Assim, nos monossacarídeos existe a proporção de um carbono para dois hidrogênio e para um oxigênio. Eles são classificados de acordo com o número de átomos de carbono.
n = 3 Trioses
n = 4 Tetroses
n = 5 Pentoses
n = 6 Hexoses
n = 7 Heptoses
Os monossacarídeos mais freqüentes nos organismos são as pentoses (5C) e as hexoses (6C).
Os oligossacarídeos e os polissacarídeos

Os oligossacarídeos são moléculas constituídas pela reunião de dois a dez monossacarídeos. Os monossacarídeos unem-se por uma reação em que ocorre a saída de uma molécula de água por ligação (desidratação). Os oligossacarídeos mais importantes são dissacarídeos, como a sacarose (açúcar comum), a lactose (açúcar do leite) e a maltose (açúcar do malte). Os polissacarídeos são moléculas enormes, às vezes ramificadas, constituídas por numerosos monossacarídeos. Exemplos mais freqüentes são o amido, o glicogênio e a celulose. Quando um animal ingere dissacarídeos ou polissacarídeos, seu tubo digestivo tem a tarefa de transformá-lo em monossacarídeos. Caso não ocorra esta conversão, a absorção pela parede do tubo digestivo não se efetua. Esta "quebra" das moléculas é chamada hidrólise, porque se faz por adição de moléculas de água. Da mesma forma que a saída de moléculas de água liga monossacarídeos uns aos outros, a adição de água "desliga" os monossacarídeos que constituem uma molécula grande. No tubo digestivo dos animais, substâncias especiais, as enzimas digestivas, apressam a hidrólise das substâncias ingeridas.

Funções
ENERGÉTICA: são os principais produtores de energia sob a forma de ATP, cujas ligações ricas em energia (±10 Kcal) são quebradas sempre que as células precisamde energia para as reações bioquímicas. É a principal função dos carboidratos, com todos os seres vivos (com exceção dos vírus) possuindo metabolismo adaptado ao consumo de glicose como substrato energético. Algumas bactérias consumem dissacarídeos (p.ex.: a lactose) na ausência de glicose, porém a maioria dos seres vivos a utiliza como principal fonte energética.
ESTRUTURAL: a parede celular dos vegetais é constituída por um carboidrato polimerizado - a celulose; a carapaça dos insetos contém quitina, um polímero que dá resistência extrema ao exo-esqueleto; as células animais possuem uma série de carboidratos circundando a membrana plasmática que dão especificidade celular, estimulando a permanência agregada das células de um tecido - o glicocálix.
RESERVA ENERGÉTICA: nos vegetais, há o amido, polímero de glicose; nos animais, há o glicogênio, também polímero de glicose porém com uma estrutura mais compacta e ramificada.

Não ESQUEÇA!!!!!
Os carboidratos são produzidos pelo processo de fotossíntese.






sábado, 22 de março de 2008

A Quimica da Célula-Substâncias Inorgânicas.



Substâncias Inorgânicas são todas aquelas que não são orgânicas, são pouco complexas e pobres em energia: Por exemplo, os minerais. A água é um substância essencial à nossa vida. Está presente nos alimentos, nas células do nosso corpo, nos outros animais e nos vegetais.


Água

É a substância encontrada em maior quantidade no interior das células vivas, atuando de diversas formas no metabolismo celular.


Funções

Solvente universal, dissolve a maioria das substâncias encontardas no mundo vivo.As substâncias que se dissolvem em água são chamadas de Hidrossolúveis.

Hidrólise, processo no qual a molécula de água atua na dissolução de outras moléculas, sob a ação da enzima hidrolase.

Ativação das enzimas, as reações enzimáticas aumentam em presença de água.

Reguladora térmica, atua como reguladora térmica no processo de transpiração. A sua evaporação retira o excesso de calor das superfícies.

Transporte de substâncias, é responsável pelo proceso de transferência de inúmeras substâncias para o meio intracelular e extracelular, assim como no interior do citoplasma facilita as reações quimicas.

O Teor de água, dentro de uma célula ou tecido depende do metabolismo de cada uma. Quanto maior o funcionamento de uma célula maior o teor de água, pois as sinteses moleculares normalmente produzem moléculas de água (síntese de carboidratos).As taxas de água tambem variam de uma espécie para outra. A espécie humana pode ter cerca de 70% de sua massa em água na idade adulta, essa taxa ultrapassa 98% nas águas-vivas. Com o envelhecimento o teor de água diminui. As moléculas de água são unidas por uma ligação denominada de Pontes de Hidrogênio.


Íons Minerais.


De maneira simples, os íons são átomos que, por um motivo qualquer, perderam ou ganharam elétrons. Quando um átomo perde elétrons se torna um íon positivo ou cátion, passando a ter excesso de cargas positivas. Contrariamente, ao ganhar elétrons, torna-se um íon negativo ou ânion. Os átomos dos elementos químicos tendem a estabilizar a última camada ganhando ou perdendo elétrons, ou seja, para a maioria há necessidade de se transformar em íons. Por exemplo, átomos de metais, como o cobre, tendem a perder elétrons (íons cátion) e átomos de ametais, como o oxigênio, tendem a ganhar elétrons (íons ânion).


O sal de cozinha ( ou cloreto de sódio) é uma substância inorgânica presente em nosso dia-a-dia. Extraído da natureza, o sal é parte de nossa alimentação e em dose equilibrada, contribuiu para a manutenção da nossa saúde. No interior das células são encontrados na forma de íons e desempenham inúmeros papeis de relevância no seu metabolismo.


Funções

Regulação da quantidade de água nas células, quanto maior a concentração de íons no interior de uma célula, maior a necessidade de água, desta forma a essa substância flui para o meio intra celular. Se a aquantidade de íons for pequena no meio intracelular e maior no meio extracelular, a célula acaba perdendo água.

Funcionamento das enzimas, várias são as enzimas que se tornam ativas quando se associam a um fator auxiliar (co-fator), que pode ser um íon mineral como o ferro.



sexta-feira, 21 de março de 2008

Núcleo Celular,sua importância e constituição.


Figura do núcleo e do retículo endoplasmático: (1) Envoltório nuclear. (2) Ribosomos. (3) Poros nucleares. (4) Nucléolo. (5) Cromatina. (6) Núcleo. (7) Retículo endoplasmático. (8) Nucleoplasma.
O núcleo é um compartimento essencial da célula eucarionte, pois é onde se localiza o material genético, responsável pelas características que o organismo possui.
Ele é delimitado pela carioteca ou envoltório nuclear( Lipoproteica), que é composto de uma membrana nuclear externa, que é contínua com a membrana do retículo endoplasmático, e uma membrana interna, que é contínua com o lúmen do RE.
O envoltório nuclear é cheio de poros que comunicam o interior do núcleo com o citossol, e são estruturas complexas conhecidas como complexo de poro nuclear. O complexo de poro nuclear possui uma parede cilíndrica constituída por proteínas que formam um canal central com arranjo octogonal, que regula a troca de metabólitos, macromoléculas e subunidades ribossômicas entre o núcleo e o citosol. Associada a superfície interna da carioteca encontra-se a lâmina nuclear, que constitui uma rede fibrosa de subunidades protéicas interconectadas, sendo responsável por dar forma e estabilidade ao envoltório nuclear, e liga este envoltório as fibras cromatínicas. A lâmina nuclear se despolimeriza durante a mitose, mas associam-se novamente ao seu final.
O nucleoplasma é constituído por uma solução aquosa de proteínas, RNAs, nucleosídeos, nucleotídeos e íons, onde se encontram os nucléolos e a cromatina. A maioria das proteínas da matriz nuclear são enzimas envolvidas com a transcrição e com a duplicação do DNA.

O nucléolo é geralmente esférico, pode ser único ou múltiplo, é onde há transcrição de RNA ribossômico e a montagem das subunidades ribossomais.

Citoplasma, o interior da célula e suas organelas.



O citoplasma é constituído por um material mais ou menos viscoso , chamado hialoplasma que preeche o citossomo (espaço interno da célula compreendido entre a membrana plamática e a carioteca ou cariomembrana) . Nele estão mergulhadas estruturas consideradas vivas, os orgânulos do citoplasma ou organelas citoplasmáticas, com funções específicas e que desempenham papéis importantes na vida da célula. Citoesqueleto são fibras de proteínas finíssimas no hialoplasma, dando forma antômica a célula.


O Hialoplasma - Quimicamente o hialoplasma é constituído de água e moléculas de proteína, formando uma dispersão que os químicos chamam de colóide. A região mais externa do citoplasma é o ectoplasma que é bastante viscoso. A parte interna do hialoplasma é o endoplasma ou citosol que é mais fluida e característica de colóide no estado de sol.


Organelas Celulares

Centrossomo
Participa da orientação dos cromossomos para os pólos da célula durante o processo mitótico, é encontrado smente em células animais, durante a intérfase torna-se reduzido apenas ao centríolos. Compõe-se de centíriolos, microcentro, centrosfera e áster.

Centríolos

Estruturas cilíndricas, geralmente encontradas aos pares. Dão origem a cílios e flagelos (menos os das bactérias), estando também relacionados com a reprodução celular - formando o fuso acromático que é observado durante a divisão celular.Apresenta-se em formação de 9 jogos de 3 microtúbulos dispostos em círculo, formando uma espécie de cilindro oco.

Mitocôndria

Função: fundamental importância no processo de respiração celular e no fornecimento de energia a partir da quebra da glicose. O fornecimento de energia provém do ciclo de Krebs, que ocorre no interior das mitocôndrias, onde a partir de uma molécula de glicose, se formam 38 ATPs, CO2 e H2O. Além disso, é na membrana mitocondrial interna que ocorre o sistema transportador de elétrons, que também fornece ATP.

Constituição: principalmente proteínas e lipídeos. Também há DNA, RNA, magnésio e cálcio. O DNA é composto de filamentos duplos e circulares. Quanto ao RNA, existe o rRNA, mRNA e o tRNA.

Estrutura: geralmente são alongadas e de tamanho e distribuição variáveis. São encontradas dispersas no citoplasma. A quantidade de mitocôndrias está diretamente relacionada com a necessidade de energia. Quanto maior a necessidade de energia, maior será o número de mitocôndrias encontradas no local, por exemplo, a cauda do espermatozóide, o fígado e o músculo estriado cardíaco. Microscopicamente as mitocôndrias apresentam duas membranas lipoprotéicas, uma membrana localiza-se mais externamente e a outra mais internamente em relação à estrutura da mitocôndria. A primeira é permeável, lisa e contém purinas, enquanto que a segunda é semipermeável e contém cristais mitocôndrias, citocromos e enzimas usadas na produção de energia. O espaço entre essas membranas é o espaço intermembranoso. O espaço interno, limitado pela membrana interna é a matriz mitocondrial. É na matriz que existe a maioria das enzimas usadas na B oxidação e no ciclo de Krebs.



Ribossomo

Função: síntese protéica.


Estrutura: existem dois tipos de ribossomos, um presente nos seres procariontes, cloroplastos e mitocôndrias e outro nos eucariontes. Os ribossomos são compostos por duas subunidades de tamanhos diferentes, que depois de prontas se separam e saem do núcleo pelo poro nuclear, passando para o citoplasma. Quando o ribossomo está disperso no citoplasma, recebe o nome de ribosoma livre e quando está aderido à superfície externa das estruturas membranosas, é chamado de ribosoma aderido.

Constituição: compostos de quatro tipos de rRNA e 80 proteínas diferentes associadas, as quais unem-se para formar uma estrutura globular condensada.


Reticulo Endoplasmático.

Funções: transporte. O retículo endoplasmático rugoso (RER) participa principalmente da síntese de esteróides e de outros lipídios, aos quais são destinados à exportação ou ao uso intracelular por organelas, como por exemplo, pelos lisossomos. O retículo endoplasmático liso (REL) participa da síntese de proteínas, mas suas funções variam de acordo com a célula em que ele se encontra, veja os exemplos a seguir. No fígado, o REL é responsável pelos processos de conjugação, oxidação e metilação. Já na glândula supra- renal, ele participa da produção de esteróides, pois ele contém algumas enzimas fundamentais para essa produção hormonal, enquanto que nas células musculares esqueléticas ele participa da ativação do cálcio e da contração muscular. Outra função é a síntese de fosfolipídios para todas as membranas celulares.

Estrutura: existem dois tipos: o RER e o REL. O RER está presente maior número nas células especializadas na secreção de proteínas, por apresentar ribossomos. Já o REL, não apresenta ribossomos e sua membrana se dispõe sob a forma de túbulos, formando um sistema mais tubular.

Constituição: ambos por uma rede de túbulos e por vesículas redondas e achatadas intercomunicantes.


Aparelho de Golgi.


Funções: completar as modificações pós-tradução, empacotar e colocar um endereço nas moléculas sintetizadas pela célula, fazer hidrólise de lipídios, terminar o processo de glicosilação, de fosforilação e de sulfatação e separar proteínas.

Estrutura: conjunto de vesículas achatadas e empilhadas que geralmente se localizam em uma determinada região do citoplasma. O tamanho e o desenvolvimento da organela são variáveis.
Constituição: as proteínas sintetizadas no retículo endoplasmático rugoso são transferidas para o Aparelho de Golgi, onde se fundem com as membranas. No Aparelho de Golgi, o produto secretado é condensado em vesículas grandes, formando os grânulos de secreção.


Lissosomos


Funções: digestão intracitoplasmática, renovação das organelas celulares, e metabolização de diversas moléculas. As substâncias do meio extracelular entram na célula através dos fagossomos. No interior da célula, o fagossomo se funde com o lisossomo primário. O processo de digestão inicia dentro de outro vacúolo, o lisossomo secundário.

Estrutura: vesículas delimitadas por membrana. Estão presentes em quase todas as células, mas em maior quantidade nos macrófagos. Geralmente são organelas esféricas e com aspecto granuloso.

Constituição: contém enzimas lisossômais (como: fosfatase ácida, glicuronidase, sulfatase, ribonuclease e colagenase) que variam com a célula. Estas enzimas são sintetizadas e segregadas no REG, transportas para o Aparelho de Golgi, onde são empacotadas, formando os lisossomos primários.

Peroxissomos


Funções: oxidar substâncias orgânicas, prozudir peróxido de hidrogênio, participa da b-oxidação, exporta acetil-CoA para o citossol, participa da síntese de ácidos biliares e de colesterol.

Estrutura: esféricas, envolvidos por membrana. Ele se divide por fissão.
Constituição: enzimas como a catalase, a urato oxidase e a D-aminoácidos e não possuem DNA e RNA. A catalase é uma enzima muito importante, pois ela oxida substâncias tóxicas ao organismo, inclusive o álcool etíl
ico.


Cloroplastos

Os plastos ou plastídeos é um grupo de organelas específicas de células vegetais e algas, que possuem características semelhantes com as mitocôndrias como: membrana dupla, DNA próprio, RNA e proteínas.Os plastos desenvolvem-se a partir de proplastídeos, que são organelas pequenas presentes nas células imaturas dos meristemas vegetais e desenvolvem-se de acordo com as necessidades da célula, surgindo diferentes tipos de plastos como: os cromoplastos (que contêm pigmentos), os leucoplastos (sem pigmento), etioplastos (que se desenvolvem na ausência de luz), amiloplastos (que acumulam amido como substância de reserva), proteoplastos (que armazenam proteína) e os oleoplastos (acumulam lipídeos).


Funções.

Realização do processo de fotossíntese.


Estutura.

Apresenta-se na forma alongada, delimitado por dupla membrana,contendo em seu interior inúmeras lâminas paralelas denominadas lamelas de constituição lipoproteica,separadas por um estroma (espaço interno do cloroplasto) onde é encontrada a clorofila.Depositadas sobre a lamela estão os tilacóides (bolsas esféricas) que se empilham formando o Grana. A estrutura granum-lamelar não é observada nos cloroplastos das algas.


Microtúbulos


Funções: oferecer rigidez na forma das células, manter os prolongamentos celulares, dar simetria à célula, servir de suporte para as células na locomoção, servir como base morfológica para centríolos, cílios, flagelos e corpúsculos basais.

Estrutura: formado por treze subunidades de a e b tubulina, chamadas de herodímero. Organizadas em forma de espiral e com comprimento e estabilidade variáveis. Possuem eventuais comunicações entre um microfilamento e outro. A parte central do microtúbulo é denominada de axonema.

Constituição: depende do local. Miosina no músculo estriado. No restante das células, em geral, são constituídos por filamentos finos de actina e filamentos grossos de miosina associados às organelas. Também outras proteínas são visualizadas nos filamentos intermediários, que são constituídos por queratinas, por vimentina, por desmina, por proteína fibrilar ácida da glia e por proteínas dos neurofilamentos.

Vacúolos digestivos.


Fagossomos e pinossomos, que contém material capturado do meio pela célula, fundem-se com lisossomos, originando bolsas membranosas chamadas vacúolos digestivos. As enzimas lisossômicas digerem as substâncias capturadas, quebrando-as e reduzindo-as a moléculas menores. Estas atravessam a mesma membrana do vacúolo digestivo e saem para o citosol, onde serão utilizadas como matéria-prima ou fonte de energia para os processos celulares.
Eventuais restos da digestão, constituídos por material não-digerido e enzimas, permanecem dentro do vacúolo, agora denominado vacúolo (ou corpo) residual. Este expulsa o conteúdo da célula por clasmocitose.

Vacúolos autofágicos e heterofágicos


Partes da célula, como, por exemplo, organelas velhas e desgastadas são constantemente atacadas e digeridas pela atividade lisossômica. Dessa forma, seus componentes moleculares podem ser reaproveitados. Os lisossomos fundem-se em torno de uma parte celular a ser digerida, formando uma bolsa membranosa chamada vacúolo autofágico (do grego autós próprio, e phagos, comer). Essa denominação ressalta o fato de o material digerido no vacúolo ser uma parte da própria célula. Quando o material digerido vem de fora da célula, capturado por fagocitose ou pinocitose, fala-se em vacúolo heterofágico (do grego heteros, outro, diferente).

Cílios e Flagelos

Os cílios e flagelos são flexíveis prolongamentos da membrana celular, que variam de comprimento, sendo responsáveis pelo movimento de células como o espermatozóide e organismos unicelulares como o Paramecium.

Membrana Plasmática (MP), Plasmalema,Envoltório celular.


Membrana celular (ou membrana plasmática ou membrana citoplasmática ou plasmalema)
É o envoltório que toda célula possui (define seu limites, e mantém as diferenças essenciais entre os meios interno e externo). Sua espessura está entre 6 a 9 nm, só visível ao microscópio eletrônico, são flexíveis e fluidas.
São estruturas altamente diferenciadas, destinadas a uma compartimentação única, na natureza. Elas são capazes de selecionar, por mecanismos de transporte ativo e passivo, os ingredientes que devem passar, tanto para dentro como para fora das células.
A MP pode ser considerada: Permeável, quando permite a passagem de soluto e solvente.
Impermeável, quando não permite a passagem de soluto e solvente.Semipermeável, quando permite a passagem somente de solvente e Selitivamente permeável,quando permite a passagem de solvente e determinados solutos.

Estrutura básica da Membrana Plasmática

Modelo Mosaico Fluido - Sugerido por Singer e Nicholson, onde as proteínas da membrana estão engastadas na camada lipídica, do lado interno, do lado externo, ou atravessando completamente a membrana. Existe uma grande variedade proteínas membranais. A fluidez esta condicionada ao tipo de ligações intermoleculares na membrana. O termo mosaico se deve ao aspecto da membrana na microscopia eletrônica. Atualmente, o modelo do mosaico fluido é o mais aceito, por encontrar apoio em varias evidencias experimentais. Este modelo propoe duas camadas de lipídios permeadas por proteínas, como apresentado na ilustração acima.
Glicocálix
É um envoltório externo a membrana, encontrado somente em células animais,formando uma rede frouxa de carboidartos que recobre a mambrana. Sua principal função é proteger a membrana contra choque químicos e físicos, além de reter diferentes enzimas e nutrientes. Pode atuar contra ataques de vírus e outos agentes.As diferentes células apresentam diferentes glicocálix, com relação a quantidade e tipo de carboidratos que o compoe.

O que é uma Célula????




Unidade fundamental, morfológica e funcional, de qualquer organismo vivo, de forma variável e dimensões geralmente microscópicas, é responsável pela reprodução, desenvolvimento e hereditariedade dos seres vivos. A maioria tem um tamanho entre 1 e 100 µm (1 micrómetro é igual a 0,001 mm). Todos os seres vivos são constituidos por elas, somente os vírus fogem a esta regra, são acelulares. As células são classificadas em Procariótica (não apresenta núcleo,portanto não tem carioteca, caso das Bactérias) e Eucarióticas (são aquelas onde existe a presença do núcleo, com carioteca, caso dos Animais, Vegetais,Algas,Protozoários, Fungos). Alem destas características estas células são diferentes em outros aspectos, as Procarióticas são de funcioamento simples apresentando somente ribossomos como organela, ja as Eucarióticas são consideradas de funcinamento mais complexo, tendo várias organelas com por exemplo mitocôndrias, complexo golgiense, ribossomos. Não esqueça!!!! Toda célula possui Membrana Plasmática (MP) e Citoplasma, mas nem sempre apresenta núcleo!!!!

História.
As células foram descobertas em 1665, por um inglês Robert Hooke. Utilizando um microscópio rudimentar, Hooke analisou uma fina lâmina de cortiça e verficou que ela era constituida por cavidades poliédricas, denominando-as de células (do latim cella-pequena cavidade). O que Hooke observou foram as paredes das células vegetais, constituidas de celulose formando ao redor destas células uma proteção.
A teoria celular foi formulada por Scheleiden e Schwann e diz que "Todo ser vivo é constituido por células".