Espaço para quem gosta de biologia, lugar de pesquisa,informações biológicas, estudo, genes,algas,vírus,célula,cromossomos, comentários e muito mais.
segunda-feira, 22 de setembro de 2008
Terapia Gênica. saiba mais.
A tecnologia básica envolvida em qualquer aplicação de terapia genética é a transferência gênica. A maneira mais simples de transferir genes para a célula e tecidos é por meio do inoculação de DNA puro, com técnicas de microinjeçào; eletroporação e o método biobalístico. Métodos mais elaborados e mais eficientes incluem a administração de DNA encapsulado (e.g., lipossomos); ou através de vetores virais, que podem ser fragmentados de DNA de vírus contendo o DNA a ser transferido; ou mesmo a partícula viral formada por proteínas virais empacotando um DNA viral modificado de maneira a tornar o vetor menos tóxico, menos patogênico ou não patogênico.
Diversos tipos de vetores são utilizados com o objetivo de levar o DNA terapêutico ao núcleo das células-alvo. Outra forma de transferência de mensagem genética envolve a entrega de RNA diretamente ao citoplasma das células, mas o RNA é mais instável que o DNA, o que limita a aplicação dessa modalidade de transferência gênica. O uso de mitocôndrias ou DNA mitocondrial (mtDNA) como vetores gênicos citoplasmáticos tem aplicação potencial na reposição do mtDNA a células com deficiência no metabolismo energético da fosforilação oxidativa causada por mutações no mtDNA. Afora o núcleo, a mitocôndria é a única organela que possui seu próprio DNA.
Código Genético humano. O que é???
A ordem particular do alinhamento dos pares ao longo da cadeia corresponde à sua sequenciação. Estas sequências que codificam as proteínas são os genes, que constituem a menor parte do ADN. Para além dos genes, o ADN é constituído na sua maior parte por material genético inativo(97%), o qual aparentemente não possui qualquer utilidade. Estudos recentes mostram que material não pode ser desprezado. Coloca-se a hipótese do mesmo desempenhar funções de coordenação e de conservação do ADN.
Projeto: Mapeamento do Genoma Humano.
A grande meta do Projeto Genoma Humano é ler e entender estas instruções. Em outras palavras, é nada menos que a busca do completo entendimento da base genética do Homo sapiens, incluindo a base genética das doenças. De posse desse conhecimento, o objetivo seguinte é aplicar tecnologia para alterar, quando preciso, algumas das instruções, visando aperfeiçoar o ser humano e livrá-lo de doenças e outros fatores limitante.
Os Números da Genética
O corpo humano contém cerca de 100 trilhões de células. Na maioria das células existe um núcleo, onde se encontra algo essencial: o genoma humano, uma estrutura contendo o projeto de construção e funcionamento do corpo. O genoma é encontrado no núcleo das células sob a forma de 46 filamentos enrolados em pacotes chamados cromossomos, que incluem também moléculas de proteínas associadas.
Se desenrolássemos estes fios e os ligássemos em série, eles formariam um frágil cordão com cerca de 1 metro e meio de comprimento, e apenas 20 trilionésimos de largura! Este fantástico cordão que encerra o código genético é na verdade constituído por uma gigantesca molécula, conhecida como ácido desoxirribonucléico — o DNA.
A estrutura espacial do DNA, descoberta em 1953 por James Watson e Francis Crick, através de estudos de difração de raios-X, tem a forma de uma dupla hélice, a famosa "escada helicoidal".
É como se fosse uma escada flexível formada por duas cordas torcidas, ligadas por degraus muito estreitos. Cada "corda" é um arranjo linear de unidades semelhantes que se repetem, chamadas nucleotídeos, e se compõem de açúcar, fosfato e uma base nitrogenada. Existem quatro bases nitrogenadas no DNA, as quais se unem aos pares para formar os "degraus" da escada: adenina (A), timina (T), guanina (G) e citosina (C). Um dado fundamental no mecanismo de funcionamento do DNA é o fato de que A e T se atraem mutuamente, da mesma forma que C e G. Elas obedecem rigorosamente à regra de que só podem se unir destas duas maneiras: A se liga a T e G se liga a C. Não pode existir no DNA um par de bases formado de adenina e citosina, ou de timina e guanina, por exemplo. A ordem particular em que as bases se alinham ao longo da cadeia de açúcar e fosfato é chamada a seqüência nucleotídica do DNA. Essa seqüência é característica para cada organismo e encerra milhões de sinais que a célula consegue interpretar como instruções para a fabricação de proteínas, como veremos a seguir.
Como funciona o Código Genético
O corpo humano conta com 20 aminoácidos diferentes, que se unem em diferentes seqüências, para constituir as diferentes proteínas necessárias à sua estrutura e funcionamento. O organismo humano pode sintetizar pelo menos 80 mil diferentes proteínas.
A instrução para que as células fabriquem uma proteína específica é dada por um segmento da cadeia de DNA contendo uma seqüência específica de bases. Isso é o que constitui o gene: um segmento de DNA que contém a mensagem completa para a síntese de uma proteína. Na linguagem química do código genético, um gene funciona como uma "sentença", cujas letras seriam as quatro bases A, C, G e T. Cada conjunto de 3 bases (codons), na seqüência ao longo da "corda" do DNA, seriam as "palavras", as quais sinalizam às células um determinado aminoácido a ser usado na síntese da proteína. Por exemplo, a seqüência de bases ATG codifica o aminoácido metionina. Um fragmento do DNA com a seqüência GAGATGGCA codifica uma seqüência de três aminoácidos, que são, respectivamente, ácido glutâmico, metionina e alanina.
Desvendar o seqüenciamento das bases dentro do DNA, para cada organismo, é desvendar o seu código genético, o "segredo" de sua formação e de seu funcionamento, pois o DNA é o "manual de instruções" usado pela célula.
Os Números da Genética
O padrão genético da espécie humana -- o genoma humano -- contém de 60 a 80 mil genes, cada um deles contendo instruções sobre como as células devem produzir um determinado tipo de proteína.
Uma vez que 3 bases codificam um aminoácido, uma proteína codificada por um gene de tamanho médio (contendo 3 mil pares de bases, por exemplo), conterá mil aminoácidos.
O número total de pares de bases é o que geralmente determina o tamanho do genoma: o genoma do homem contém aproximadamente 3 bilhões de pares de bases; o de uma levedura, cerca de 15 milhões; e o da bactéria Escherichia coli, cerca de 4,5 milhões.
Os cientistas calculam que a diferença entre o DNA do homem e o DNA do chimpanzé é de apenas 2%.
Entre os estudos de organismos não-humanos, o seqüenciamento genético da bactéria Xylella fastidiosa é uma contribuição brasileira ao Projeto Genoma. Banco de Dados Microbiológicos do TIGR)
Um aspecto particular do Projeto Genoma Humano norteamericano é que ele procura abordar também os aspectos éticos, legais e sociais envolvidos.
O Projeto Genoma Humano é um empreendimento internacional, iniciado formalmente em 1990 e projetado para durar 15 anos, com os seguintes objetivos:
— Identificar e fazer o mapeamento dos 80 mil genes que se calcula existirem no DNA das células do corpo humano;
— Determinar as seqüências dos 3 bilhões de bases químicas que compõem o DNA humano;
— Armazenar essa informação em bancos de dados, desenvolver ferramentas eficientes para analisar esses dados e torná-los acessíveis para novas pesquisas biológicas.
Como parte deste empreendimento, paralelamente estão sendo desenvolvidos estudos com outros organismos selecionados, principalmente microorganismos, visando desenvolver tecnologia e também como auxílio ao trabalho de interpretar a complexa função genética humana. Como existe uma ordem subjacente a toda a diversidade da vida e como todos os organismos se relacionam através de semelhanças em suas seqüências de DNA, o conhecimento adquirido a partir de genomas não-humanos freqüentemente leva a novas descobertas na biologia humana.
Significado de mapeamento e seqüenciamento do genoma
O PGH tem como um objetivo principal construir uma série de diagramas descritivos de cada cromossomo humano, com resoluções cada vez mais apuradas. Para isso, é necessário: dividir os cromossomos em fragmentos menores que possam ser propagados e caracterizados; e depois ordenar estes fragmentos, de forma a corresponderem a suas respectivas posições nos cromossomos (mapeamento).
Depois de completo o mapeamento, o passo seguinte é determinar a seqüência das bases de cada um dos fragmentos de DNA já ordenados. O objetivo é descobrir todos os genes na seqüência do DNA e desenvolver meios de usar esta informação para estudo da biologia e da medicina.
Um mapa genômico descreve a ordem dos genes ou de outros marcadores e o espaçamento entre eles, em cada cromossomo. Existem mapas de baixa resolução, como os mapas de associações genéticas, que indicam as posições relativas dos marcadores de DNA (genes e outras seqüências identificáveis de DNA) através de seus padrões de hereditariedade; e existem os mapas físicos, que descrevem as características químicas da própria molécula de DNA. Um nível maior de resolução é obtido associando-se os genes a cromossomos específicos.
domingo, 4 de maio de 2008
Membrana Plasmática- Transporte de substâncias.
Transporte Ativo.
Exocitose e Endocitose
quinta-feira, 17 de abril de 2008
Química da Célula-Ácidos Nucleicos.
O DNA (que significa, em inglês, DesoxirriboNucleic Acid, ou ácido desoxirribonucléico). Ele tem esse nome porque o açúcar que o forma é a desoxirribose. E o RNA (que significa, em inglês, RiboNucleic Acid, ou ácido ribonucléico). O nome vem do açúcar que o compõe, que é a ribose. São formados por unidades menores chamados de Nucleotídios. Cada Nucleotídio apresenta em sua molécula Um fosfato, Uma Pentose(Açúcar) e Uma Base Nitrogenada.
Quimica da Célula- Enzimas
As enzimas são capazes de decompor moléculas complexas em unidades menores (carboidratos em açúcares, por exemplo), de catalisar alterações estruturais dentro de uma molécula (caso da isomerização da glicose em frutose), assim como podem ajudar a construir moléculas específicas (de material celular, por exemplo). Algumas das enzimas mais conhecidas se encontram em nosso trato digestivo, onde auxiliam a digestão e a assimilação de alimentos.
Uma das características principais das enzimas é que elas têm uma e apenas uma função cada (especificidade). Cada função ou substrato dentro de um organismo possui apenas sua única enzima respectiva. O substrato que será transformado preenche a enzima como chave-fechadura. Apenas quando a enzima ideal encontrar o substrato ideal, as reações bioquímicas podem ocorrer.
terça-feira, 15 de abril de 2008
Química da Célula- Aminoácidos.
Cada variação no número ou na seqüência de aminoácidos produz uma proteína diferente, uma grande variedade de proteínas é possível. A situação é semelhante à utilização de um alfabeto de 20 letras para formar palavras. Cada letra seria equivalente a um aminoácido, e cada palavra seria uma proteína diferente.
Quimica da Célula-Proteínas
Funções: as proteínas podem ser agrupadas em várias categorias de acordo com a sua função. De uma maneira geral, as proteínas desempenham nos seres vivos as seguintes funções: estrutural, enzimática, hormonal, de defesa, nutritivo, coagulação sangüínea e transporte.
A desnaturação é um processo, geralmente irreversível, que consiste na quebra das estruturas secundária e terciária de uma proteína. Isso pode ocorrer em decorrência da alteração do Ph e Altas temperaturas.
Uma proteína difere de outra:
Pelo número de aminoácidos: uma proteína A é formada por 610 aminoácidos de determinados tipos e ordenados numa certa seqüência. Uma proteína B é formada pelos mesmos tipos de aminoácidos, na mesma seqüência, mas em número de 611. A proteína B será diferente da A apenas por conter uma unidade a mais.
Pelo tipo de aminoácidos: uma proteína C apresenta, num certo trecho de sua molécula, aminoácidos corno valina, glicina, leucina, triptofano, treonina, alanina e arginina. Uma proteína D, formada pelo mesmo número de aminoácidos e na mesma seqüência que a proteína C, apresenta nesse trecho os aminoácidos valina, glicina, isoleucina, triptofano, treonina, alanina e arginina. Apenas pelo fato de na proteína C haver leucina no trecho de molécula considerado, as proteínas C o D são diferentes.
Pela seqüência dos aminoácidos: uma proteína E é formada, em determinado trecho de sua molécula, pelos aminoácidos cisteína, serina, metionina, leucina, histidina e lisina. Uma proteína F é formada pelos mesmos aminciácidos, mas, no tracho em exame, há uma inversão na posição de dois deles; cisteína, metionina, serina, leucina, hístidina e lisina. Por causa disso, as proteínas E e F são diferentes.
Pelo formato da molécula: as moléculas protéicas assumem determinados formatos é, quando os formatos de duas moléculas são diferentes, elas também o são. Conclui-se, então, que podendo repetir-se à vontade os 20 tipos de aminoácidos e, ainda, combinando-se de várias formas a partir das diferenças que acabamos de examinar, uma célula pode produzir muitas proteínas diferentes. Imagina-se, então, quantas proteínas podem ser produzidas por todos os seres vivos.
Química da Célula- Lipídios.
Quimica da Célula-Carboidratos, Glicídios ou Hidratos de Carbono.
Os monossacarídeos têm normalmente a fórmula Cn(H2O)n, onde n geralmente varia de 3 a 7. Assim, nos monossacarídeos existe a proporção de um carbono para dois hidrogênio e para um oxigênio. Eles são classificados de acordo com o número de átomos de carbono.
n = 3 Trioses
n = 4 Tetroses
n = 5 Pentoses
n = 6 Hexoses
n = 7 Heptoses
Os monossacarídeos mais freqüentes nos organismos são as pentoses (5C) e as hexoses (6C).
ENERGÉTICA: são os principais produtores de energia sob a forma de ATP, cujas ligações ricas em energia (±10 Kcal) são quebradas sempre que as células precisamde energia para as reações bioquímicas. É a principal função dos carboidratos, com todos os seres vivos (com exceção dos vírus) possuindo metabolismo adaptado ao consumo de glicose como substrato energético. Algumas bactérias consumem dissacarídeos (p.ex.: a lactose) na ausência de glicose, porém a maioria dos seres vivos a utiliza como principal fonte energética.
ESTRUTURAL: a parede celular dos vegetais é constituída por um carboidrato polimerizado - a celulose; a carapaça dos insetos contém quitina, um polímero que dá resistência extrema ao exo-esqueleto; as células animais possuem uma série de carboidratos circundando a membrana plasmática que dão especificidade celular, estimulando a permanência agregada das células de um tecido - o glicocálix.
RESERVA ENERGÉTICA: nos vegetais, há o amido, polímero de glicose; nos animais, há o glicogênio, também polímero de glicose porém com uma estrutura mais compacta e ramificada.
sábado, 22 de março de 2008
A Quimica da Célula-Substâncias Inorgânicas.
sexta-feira, 21 de março de 2008
Núcleo Celular,sua importância e constituição.
Ele é delimitado pela carioteca ou envoltório nuclear( Lipoproteica), que é composto de uma membrana nuclear externa, que é contínua com a membrana do retículo endoplasmático, e uma membrana interna, que é contínua com o lúmen do RE.
O envoltório nuclear é cheio de poros que comunicam o interior do núcleo com o citossol, e são estruturas complexas conhecidas como complexo de poro nuclear. O complexo de poro nuclear possui uma parede cilíndrica constituída por proteínas que formam um canal central com arranjo octogonal, que regula a troca de metabólitos, macromoléculas e subunidades ribossômicas entre o núcleo e o citosol. Associada a superfície interna da carioteca encontra-se a lâmina nuclear, que constitui uma rede fibrosa de subunidades protéicas interconectadas, sendo responsável por dar forma e estabilidade ao envoltório nuclear, e liga este envoltório as fibras cromatínicas. A lâmina nuclear se despolimeriza durante a mitose, mas associam-se novamente ao seu final.
O nucleoplasma é constituído por uma solução aquosa de proteínas, RNAs, nucleosídeos, nucleotídeos e íons, onde se encontram os nucléolos e a cromatina. A maioria das proteínas da matriz nuclear são enzimas envolvidas com a transcrição e com a duplicação do DNA.
O nucléolo é geralmente esférico, pode ser único ou múltiplo, é onde há transcrição de RNA ribossômico e a montagem das subunidades ribossomais.
Citoplasma, o interior da célula e suas organelas.
O Hialoplasma - Quimicamente o hialoplasma é constituído de água e moléculas de proteína, formando uma dispersão que os químicos chamam de colóide. A região mais externa do citoplasma é o ectoplasma que é bastante viscoso. A parte interna do hialoplasma é o endoplasma ou citosol que é mais fluida e característica de colóide no estado de sol.
Centrossomo
Centríolos
Estruturas cilíndricas, geralmente encontradas aos pares. Dão origem a cílios e flagelos (menos os das bactérias), estando também relacionados com a reprodução celular - formando o fuso acromático que é observado durante a divisão celular.Apresenta-se em formação de 9 jogos de 3 microtúbulos dispostos em círculo, formando uma espécie de cilindro oco.
Função: fundamental importância no processo de respiração celular e no fornecimento de energia a partir da quebra da glicose. O fornecimento de energia provém do ciclo de Krebs, que ocorre no interior das mitocôndrias, onde a partir de uma molécula de glicose, se formam 38 ATPs, CO2 e H2O. Além disso, é na membrana mitocondrial interna que ocorre o sistema transportador de elétrons, que também fornece ATP.
Constituição: principalmente proteínas e lipídeos. Também há DNA, RNA, magnésio e cálcio. O DNA é composto de filamentos duplos e circulares. Quanto ao RNA, existe o rRNA, mRNA e o tRNA.
Estrutura: geralmente são alongadas e de tamanho e distribuição variáveis. São encontradas dispersas no citoplasma. A quantidade de mitocôndrias está diretamente relacionada com a necessidade de energia. Quanto maior a necessidade de energia, maior será o número de mitocôndrias encontradas no local, por exemplo, a cauda do espermatozóide, o fígado e o músculo estriado cardíaco. Microscopicamente as mitocôndrias apresentam duas membranas lipoprotéicas, uma membrana localiza-se mais externamente e a outra mais internamente em relação à estrutura da mitocôndria. A primeira é permeável, lisa e contém purinas, enquanto que a segunda é semipermeável e contém cristais mitocôndrias, citocromos e enzimas usadas na produção de energia. O espaço entre essas membranas é o espaço intermembranoso. O espaço interno, limitado pela membrana interna é a matriz mitocondrial. É na matriz que existe a maioria das enzimas usadas na B oxidação e no ciclo de Krebs.
Estrutura: existem dois tipos de ribossomos, um presente nos seres procariontes, cloroplastos e mitocôndrias e outro nos eucariontes. Os ribossomos são compostos por duas subunidades de tamanhos diferentes, que depois de prontas se separam e saem do núcleo pelo poro nuclear, passando para o citoplasma. Quando o ribossomo está disperso no citoplasma, recebe o nome de ribosoma livre e quando está aderido à superfície externa das estruturas membranosas, é chamado de ribosoma aderido.
Constituição: compostos de quatro tipos de rRNA e 80 proteínas diferentes associadas, as quais unem-se para formar uma estrutura globular condensada.
Funções: transporte. O retículo endoplasmático rugoso (RER) participa principalmente da síntese de esteróides e de outros lipídios, aos quais são destinados à exportação ou ao uso intracelular por organelas, como por exemplo, pelos lisossomos. O retículo endoplasmático liso (REL) participa da síntese de proteínas, mas suas funções variam de acordo com a célula em que ele se encontra, veja os exemplos a seguir. No fígado, o REL é responsável pelos processos de conjugação, oxidação e metilação. Já na glândula supra- renal, ele participa da produção de esteróides, pois ele contém algumas enzimas fundamentais para essa produção hormonal, enquanto que nas células musculares esqueléticas ele participa da ativação do cálcio e da contração muscular. Outra função é a síntese de fosfolipídios para todas as membranas celulares.
Estrutura: existem dois tipos: o RER e o REL. O RER está presente maior número nas células especializadas na secreção de proteínas, por apresentar ribossomos. Já o REL, não apresenta ribossomos e sua membrana se dispõe sob a forma de túbulos, formando um sistema mais tubular.
Constituição: ambos por uma rede de túbulos e por vesículas redondas e achatadas intercomunicantes.
Estrutura: conjunto de vesículas achatadas e empilhadas que geralmente se localizam em uma determinada região do citoplasma. O tamanho e o desenvolvimento da organela são variáveis.
Constituição: as proteínas sintetizadas no retículo endoplasmático rugoso são transferidas para o Aparelho de Golgi, onde se fundem com as membranas. No Aparelho de Golgi, o produto secretado é condensado em vesículas grandes, formando os grânulos de secreção.
Funções: digestão intracitoplasmática, renovação das organelas celulares, e metabolização de diversas moléculas. As substâncias do meio extracelular entram na célula através dos fagossomos. No interior da célula, o fagossomo se funde com o lisossomo primário. O processo de digestão inicia dentro de outro vacúolo, o lisossomo secundário.
Estrutura: vesículas delimitadas por membrana. Estão presentes em quase todas as células, mas em maior quantidade nos macrófagos. Geralmente são organelas esféricas e com aspecto granuloso.
Constituição: contém enzimas lisossômais (como: fosfatase ácida, glicuronidase, sulfatase, ribonuclease e colagenase) que variam com a célula. Estas enzimas são sintetizadas e segregadas no REG, transportas para o Aparelho de Golgi, onde são empacotadas, formando os lisossomos primários.
Funções: oxidar substâncias orgânicas, prozudir peróxido de hidrogênio, participa da b-oxidação, exporta acetil-CoA para o citossol, participa da síntese de ácidos biliares e de colesterol.
Estrutura: esféricas, envolvidos por membrana. Ele se divide por fissão.
Constituição: enzimas como a catalase, a urato oxidase e a D-aminoácidos e não possuem DNA e RNA. A catalase é uma enzima muito importante, pois ela oxida substâncias tóxicas ao organismo, inclusive o álcool etílico.
Cloroplastos
Microtúbulos
Funções: oferecer rigidez na forma das células, manter os prolongamentos celulares, dar simetria à célula, servir de suporte para as células na locomoção, servir como base morfológica para centríolos, cílios, flagelos e corpúsculos basais.
Estrutura: formado por treze subunidades de a e b tubulina, chamadas de herodímero. Organizadas em forma de espiral e com comprimento e estabilidade variáveis. Possuem eventuais comunicações entre um microfilamento e outro. A parte central do microtúbulo é denominada de axonema.
Constituição: depende do local. Miosina no músculo estriado. No restante das células, em geral, são constituídos por filamentos finos de actina e filamentos grossos de miosina associados às organelas. Também outras proteínas são visualizadas nos filamentos intermediários, que são constituídos por queratinas, por vimentina, por desmina, por proteína fibrilar ácida da glia e por proteínas dos neurofilamentos.
Fagossomos e pinossomos, que contém material capturado do meio pela célula, fundem-se com lisossomos, originando bolsas membranosas chamadas vacúolos digestivos. As enzimas lisossômicas digerem as substâncias capturadas, quebrando-as e reduzindo-as a moléculas menores. Estas atravessam a mesma membrana do vacúolo digestivo e saem para o citosol, onde serão utilizadas como matéria-prima ou fonte de energia para os processos celulares.
Eventuais restos da digestão, constituídos por material não-digerido e enzimas, permanecem dentro do vacúolo, agora denominado vacúolo (ou corpo) residual. Este expulsa o conteúdo da célula por clasmocitose.
Vacúolos autofágicos e heterofágicos
Partes da célula, como, por exemplo, organelas velhas e desgastadas são constantemente atacadas e digeridas pela atividade lisossômica. Dessa forma, seus componentes moleculares podem ser reaproveitados. Os lisossomos fundem-se em torno de uma parte celular a ser digerida, formando uma bolsa membranosa chamada vacúolo autofágico (do grego autós próprio, e phagos, comer). Essa denominação ressalta o fato de o material digerido no vacúolo ser uma parte da própria célula. Quando o material digerido vem de fora da célula, capturado por fagocitose ou pinocitose, fala-se em vacúolo heterofágico (do grego heteros, outro, diferente).
Os cílios e flagelos são flexíveis prolongamentos da membrana celular, que variam de comprimento, sendo responsáveis pelo movimento de células como o espermatozóide e organismos unicelulares como o Paramecium.
Membrana Plasmática (MP), Plasmalema,Envoltório celular.
É o envoltório que toda célula possui (define seu limites, e mantém as diferenças essenciais entre os meios interno e externo). Sua espessura está entre 6 a 9 nm, só visível ao microscópio eletrônico, são flexíveis e fluidas.
São estruturas altamente diferenciadas, destinadas a uma compartimentação única, na natureza. Elas são capazes de selecionar, por mecanismos de transporte ativo e passivo, os ingredientes que devem passar, tanto para dentro como para fora das células.
Estrutura básica da Membrana Plasmática
Modelo Mosaico Fluido - Sugerido por Singer e Nicholson, onde as proteínas da membrana estão engastadas na camada lipídica, do lado interno, do lado externo, ou atravessando completamente a membrana. Existe uma grande variedade proteínas membranais. A fluidez esta condicionada ao tipo de ligações intermoleculares na membrana. O termo mosaico se deve ao aspecto da membrana na microscopia eletrônica. Atualmente, o modelo do mosaico fluido é o mais aceito, por encontrar apoio em varias evidencias experimentais. Este modelo propoe duas camadas de lipídios permeadas por proteínas, como apresentado na ilustração acima.
O que é uma Célula????
História.